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The use of small inhibitors’ fragment frequencies for understanding kinase potency and selectivity is described.
By quantification of differences in the frequency of occurrence of fragments, similarities between small
molecules and their targets can be determined. Naive Bayes models employing fragments provide highly
interpretable and reliable means for predicting potency in individual kinases, as demonstrated in retrospective
tests and prospective selections that were subsequently screened. Statistical corrections for prospective
validation allowed us to accurately estimate success rates in the prospective experiment. Selectivity
relationships between kinase targets are substantially explained by differences in the fragment composition
of actives. By application of fragment similarities to the broader proteome, it is shown that targets related
by sequence exhibit similar fragment preferences in small molecules. Of greater interest, certain targets
unrelated by sequence are shown to have similar fragment preferences, even when the chemical similarity
of ligands active at each target is low.

Introduction

The recognition of fragments in small organic molecules is
an intuitive process for medicinal chemists, reflecting the manner
in which molecules are synthesized from chemical building
blocks. Algorithmic approaches for reducing molecules to
fragments have been used for retrosynthetic analysis1,2 and for
the characterization of their druglike properties.3,4 In addition,
protein receptors recognize certain fragments with greater
preference. The concept of “privileged structure” is grounded
in the observation that certain substructures confer potency
within a class of targets;5–8 hydroxamates confer potency for
matrix metalloproteases, benzamidine for serine proteases, and
aminopyrimidines for kinases and ATP binding proteins. The
linking of privileged fragments with fragments from other
sources (e.g., drugs) is a well-established approach for designing
targeted chemical libraries9 (Figure 1). Understanding target
similarity relationships via fragments has strong appeal in
fragment screening and hit generation via fragment growing and
linking.10,11 Such fragment centric relationships offer the
possibility of tailoring screening sets for a given target using
greater wealth of data at a related target.

The properties of small molecules have been used to create
pharmacological maps, which describe relationships among
proteins. Our earlier work defined SAR similarity, which relates
the extent to which compounds assayed at two targets inhibit
them in a similar manner.12,13 The relationship between targets
and their ligands has been described by Frye.14 Paolini and
colleagues employ simpler measures of cross-target promiscu-
ity,15 which also require affinity determination of compounds
at both targets. Izrailev and Farnum16 have demonstrated the
potential to annotate targets of unknown function by assessing
the similarity of ligands for the query target to those of well-
annotated reference targets. Bender and colleagues used principal
component analysis on multitarget affinity predictions for

defining bioactivity spaces.17,18 An approach described by Keiser
and colleagues19 circumvents the need for activity data at two
targets; Daylight fingerprints coupled to a statistical model can
be shown to group targets via their ligands in a biologically
meaningful way.
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Figure 1. (Top) Schematic description of the Dicer algorithm for
reducing small organic molecules to fragments. (Bottom) The reduction
of molecules to fragments, coupled to chemically intelligent reassembly
rules, allows for the enumeration of large virtual chemistry spaces.
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In this work, we describe a simple approach for reducing
organic molecules to a series of redundant fragments (Figure
1), using five simple rules motivated by the manner in which
chemists reduce molecules to reagents. Encoding the properties
of small molecules via their fragment composition allows for
reliable affinity prediction using standard cheminformatics
methods while retaining the intuitive characteristics of frag-
ments. We show that the frequency at which fragments occur
in active molecules can be used to define target similarity, in a
manner that complements sequence-based comparisons and the
whole-molecule approaches listed above. The relationship
between fragment frequencies in active compounds and kinase
selectivity is demonstrated. Fragment similarities can be applied
to targets spanning the proteome,20 identifying targets unrelated
in sequence that show preference for similar chemical fragments,
even in cases where the overall similarity of active compounds
is low.

Predicting Kinase Activity from Fragment Composition

The use of fingerprint representations of small molecules is
widespread in chemical informatics. Daylight fingerprints (www.
daylight.com) and related methods enumerate paths of various
length through molecules, using the types and number of such
paths to set various bits in a fingerprint. MACCS fingerprints
(www.mdl.com) use a simpler approach, noting the presence
or absence of functional groups within a predefined dictionary.
An implementation of Merck atom-pair fingerprints21 enumer-
ates pairs of atoms in molecules at various bond separations;
the atoms are distinguished using topological torsion descrip-
tors22 (MAPTTa). There are other fingerprinting approaches,23

e.g., 3D pharmacophore fingerprints, that we have not examined
here. A common aspect of fingerprint approaches is the difficulty
of casting the bit-string representation into chemically intelligible
form. For the examples above, it is most severe for Daylight
fingerprints (i.e. it is hard to know what a “1” bit means).

The reduction of small organic molecules to fragments with
the Dicer algorithm (Methods) allows for their representation
via fragment fingerprints. A fragment-derived fingerprint denotes
the presence or absence of each fragment within a particular
molecule. We define fingerprints of moderate length by con-
sidering only fragments occurring more than 1 time per 1000
molecules within the set of compounds under consideration. For
the kinase set discussed below, this results in approximately
1800 fragments.

Beyond their traditional use in similarity searching, chemical
fingerprint methods can be used for QSAR modeling and activity
prediction (e.g., using partial least-squares24 or naive Bayes
models15,17,18) in which the weight of each chemical feature is
adjusted with reference to the known activities of training
compounds. Because of their simplicity and ease of interpreta-
tion, we explore the usefulness of naive Bayes models, in which
compounds are described by Daylight, MACCS, MAPTT, and
fragment fingerprints. For each fingerprint bit or fragment, its
presence in a given molecule is denoted by 1 (present) or 0
(absent).25 A naive Bayes model indicates the probability of
observing activity, given the presence or absence of chemical
features in molecules (Methods).

Thirty-six kinase assays were assembled from our internal
research efforts, with each kinase having at least 500 actives

(g70% inhibition at 20 µM test substance concentration)26 and
2000 or more compounds assayed. Models were constructed
using 67% of actives and inactives, with the remainder used
for model validation; compounds were randomly allocated to
training and test sets, and results were averaged over 10 such
splits. The usefulness of models was quantified using two
approaches. A conventional measure of success in virtual
screening is the enrichment ratio (ER); it indicates the relative
improvement in the number of active molecules within the top
X% of a set ranked by score, compared to random selection.
We report enrichment ratios at the top 1, 5 and 10% of
compounds ranked by score (Table 1).27 On average, fragment-
based models exceed the predictive accuracy of Daylight,
MACCS, or MAPTT models in retrospective cross-validation.

An alternative to enrichment ratio calculations consists of
plotting the true positive rate (sensitivity) vs 1-true negative
rate (1-specificity) while varying the threshold used for clas-
sifying compounds as active or inactive; i.e., a “receiver-operator
characteristic” (ROC) plot. For such ROC plots, the area under
the curve (AUC) represents the probability that a randomly
selected active compound scores higher than a randomly selected
inactive. The ranking of methods mirrors that obtained with
conventional enrichment ratios. Models using fragments out-
perform those using Daylight, MACCS, and MAPTT finger-
prints in the ER and AUC metrics. The overall ranking of
fragments > Daylight > MAPTT > MACCS is observed for
most kinases except for the insulin receptor kinase (INSR),
where the fragment model has a lower AUC value than the
Daylight model (AUC 0.79 vs 0.81) (Figure 2).

The fragment naive Bayes models for six kinases were used
in a prospective virtual screening of our compound collection,
with the goal of identifying new/previously undiscovered actives.
Compounds having a probability score greater than 0.5 in any
model were selected and tested at all six kinases, using the same
assays employed for training and validating the models.

It is occasionally remarked that predictive models fail to meet
expectations; the source of those expectations are often in the
assumptions made in retrospective cross-validation.28 One factor
responsible for discrepancies between expected and observed
accuracy is the different manner in which the compounds used
for developing the model are selected for screening. In this work,
most assayed compounds were synthesized as libraries designed
to inhibit various kinases, were purchased with a similar intent,
or were selected from lead optimization efforts against kinase
targets. The prevalence of actives in such a set is much higher
than prevalence of actives in our collection as a whole. As such,
the sensitivity (true positive rate) and specificity (true negative
rate) determined through cross-validation on previously assayed
compounds convey excessively optimistic expectations of hit
rates obtained in virtual screening applications on general
compound collections, since the composition of the compound
sets differs markedly.

The positive predictive value (PPV) of a model, otherwise
referred to as model hit rate or precision, is the probability that

a Abbreviations: MAPTT, Merck atom pair/topological torsion finger-
prints; ER, enrichment ratio; TP, true positive rate; TN, true negative rate;
ROC, receiver-operator characteristic; AUC, area under the curve; PPV,
positive predictive value; GPCR, G-protein-coupled receptor; NHR, nuclear
hormone receptor; DIOD, drugs in other drugs; RECAP, retrosynthetic
combinatorial analysis procedure.

Table 1. Comparing Fingerprints for Single Point Activity Prediction:
Average (Standard Deviation) over 36 Kinases and 10 Train/Test Splits
Per Kinase

Daylight MACCS MAPTT fragments
maximum
possiblea

ER1% 5.1 (0.81) 5.9 (0.87) 5.8 (0.85) 8.9 (0.58) 11.1
ER5% 5.1 (0.32) 4.0 (0.42) 5.2 (0.35) 6.7 (0.28) 11.0
ER10% 4.6 (0.20) 3.0 (0.26) 4.2 (0.21) 5.1 (0.17) 6.7
AUC 0.81 (0.01) 0.70 (0.02) 0.79 (0.01) 0.87 (0.01) 1.0

a Maximum enrichment possible, obtained by selecting only actives until
there are none left.
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a compound predicted to be active is found to be active. It can
be calculated from the sensitivity, specificity, and estimated
prevalence (Methods). While this measure is infrequently used
in virtual screening application, it is a standard measure used
in many disciplines for conveying the “real world” expectations
of a diagnostic test or model. At low prevalence (i.e., hit rate)
of actives across the entire screening collection, the specific-
ity of models affects the PPV significantly more than sensitivity,
since models will be evaluating inactive compounds far more
frequently than actives. Typical hit rates from medium- and
high-throughput screens (in which the selection of compounds
from the collection is significantly more random) are 0.1–10%.
The hit rate observed in screening may be lower than the PPV,
since the latter does not account for factors such as extrapolation
from training data, errors in structures, etc.

Comparisons between retrospective cross-validation and
results from prospective screening against the six kinases are
given in Table 2 and Figure 2. The large difference in specificity
between retrospective and prospective studies can be understood
from the manner in which compounds were selected: the
specificity for the prospective experiment could have been
improved by screening more of the compounds predicted
inactive, since most compounds in our collection will be inactive
at a given target. Correspondingly, the sensitivity would
decrease, since some of the untested compounds will be found
active, despite being predicted inactive. Of 1965 compounds
predicted active and tested, 42% tested active at one or more
kinases; 87% of 30 compounds predicted inactive at every kinase
test inactive at every kinase. Our model hit rates significantly
exceed the average prevalence of actives in the training data

(24%, i.e., synthesizing/purchasing compounds without using
a predictive model) and typical hit rates from screening
campaigns.

PPVs calculated using the prevalence of actives in the training
and test data are approximately twice those obtained in the
prospective screening experiment (PPV for the latter is simply
the fraction of predicted actives that confirmed active in the
assay). Because of differences between the training/test com-
pounds and our corporate collection, we calculate PPVs using
two estimates of prevalences in our collection: (1) assuming
that each kinase has a 5% prevalence of actives and (2) using
the actives prevalence observed when screening diverse com-
pound cassettes at that target. The exact value of prevalence
can only be determined by screening the entire set of compounds
in the collection (which would defeat the purpose of predictive
modeling). Calculating PPV using a few plausible prevalence
values observed from similar screens serves to highlight the
success rate that can be expected from prospective screening.

Understanding Kinase Targets with Fragments

A number of reports have described the concept of struc-
ture–activity relationship (SAR) similarity of kinases, a metric
that quantifies the degree to which compounds assayed at two
kinases exhibit similar activity in each assay (i.e., cross-activity)
and reflects the ease or difficulty of obtaining selectivity at one
target vs another. In this work, we calculate the SAR similarity
of two kinases using screening data obtained from internal
profiling of compounds at 53 kinases (the previous 36 kinases
and an additional 17 having fewer than 500 actives per target).
Each assay has been used to profile 2000 or more compounds,
and each pair of assays has 570 or more compounds in common.
The SAR similarity of two kinases is strongly (negatively)
correlated with the average activity difference calculated over
all compounds assayed at both targets (Pearson correlation
coefficient r for SAR similarity vs average activity rmsd )
-0.89 for 1378 pairs of 53 kinases).

We explore the use of fragment frequencies as predictors for
SAR similarity by quantifying similarities in the distribution
of fragments within actives at each kinase (i.e., with no
requirement that the actives at one target have been assayed at
the other; actives have g70% inhibition at 20 µM screening
concentration). Fragment similarity between two kinases is
calculated with the Tanimoto coefficient (Tc), using the fre-
quency of approximately 1800 fragments observed in the tested
compounds (Tc ranges between 0 and 1, with 1 indicating
identical fragment frequencies observed for both proteins).

The SAR similarity of kinases is reasonably predicted by the
fragment composition of actives. To compare fragment com-
position with more established chemical fingerprinting methods,
target similarities were calculated using Daylight fingerprints
and MACCS keys using the same procedure (i.e., calculating
the frequency of each Daylight bit or MACCS key in actives
for a given target and comparing two targets via the Tanimoto
coefficient). Fragment frequencies are substantially more predic-
tive of the experimentally determined SAR similarity of kinases
than either Daylight fingerprints or MACCS keys (Figure 3).
In a small number of cases, kinases having high sequence
similarity are found to have fragment similarities outside the
highest quartile: EphB4 vs EphA4 (81%), PKCe vs PKCh
(78%), and PKCh vs PKCb2 (68%) have high sequence
similarity (indicated in parentheses) but lower fragment similar-
ity; all have high SAR similarity, indicating shortcomings in
the fragment similarity metric.

The determination of SAR similarity, or any other measure
of target affinity correlation, requires a substantial quantity of

Figure 2. Predictive models of kinase activity. (A) Area under the
curve (AUC) from receiver-operator characteristic (ROC) plots deter-
mined with retrospective validation of naive Bayes models using
fragments, Daylight, MACCS, and MAPTT fingerprints. Larger AUC
values (maximum 1) indicate superior models. For 35/36 kinases (i.e.,
INSR excepted), fragment models have larger AUC values than the
other methods. Two-sided t tests indicate that all differences between
fragment models and those using other descriptors are significant (P <
0.05). (B) Comparison of scores from fragment naive Bayes models
(range 0-1) to assay results (range 0-100% inhibition at 20uM) for
six kinases screened in prospective tests. Red indicates activity with
blue representing lack thereof.
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affinity measurements from compounds assayed at both targets.
For this reason, a number of approaches have examined the
possibility of understanding SAR similarity in the context of
more directly accessible quantities, such as sequence similarity12

and active-site similarity.13,31,32 The fragment similarity defined
in this work requires only a modest number of compounds (∼50)
active at each target, with no requirement for testing the same
compounds at both targets. The determination of SAR similarity
itself requires a number of assumptions to be made, including
the minimum number of compounds assayed at both targets,
what constitutes a reasonably diverse compound set, and the
type of similarity metric (e.g., Tanimoto, cosine, Euclidian
distance, etc.).

In Figure 3, we compare SAR similarity determined using
our entire tested compound set to an analogous quantity from
the subset appearing in PubChem (pubchem.ncbi.nlm.nih.gov),
our previous work13 that employed actives with IC50 data from
the literature, and published data from Ambit Biosciences29 on
19 clinical/launched inhibitors. The modest correlations for the
last two sources highlight the limitations of using data from
the literature where cross-activity data are sparse or of using
very small compound sets. The dehydron approach of Fernandez
and co-workers30,31 and our own structure-based method13 fail
to explain our profiling SAR similarity and are substantially
worse than a simple measure of sequence identity. In summary,
the fragment composition of actives is by far the best predictor
of the experimentally determined SAR similarity.

Understanding Activity across Gene Families with
Fragments

The utility of fragments for understanding relationships
between proteins was examined using a large data set of
compounds active across the druggable proteome.20 The journal
and patent literature (as curated by GVK Biosciences, Inc.)
contains approximately 151 000 compounds having an IC50 or
Ki value of e1 µM at a human, mouse, or rat protein receptor
(about 193 000 reported compound-activity values, after retain-
ing only the human value where data exist and using mouse or
rat values otherwise. By mapping of the mouse and rat proteins
to their human orthologues, 518 proteins have a known ligand
with submicromolar activity. In this analysis, we restrict
ourselves to the 223 proteins with 100 or more small molecules
having activity of e1 µM.

Compound-target pairs (with targets annotated using official
Entrez gene symbols) were assigned to a gene family/subfamily
using the Proteome database.33 The active compounds were
reduced to fragments with the Dicer algorithm (Methods). The
most frequently occurring small fragments fail to differenti-
ate actives across gene families; phenyl, benzyl, and assorted
simple one-member cycles account for approximately 6 of the
10 top fragments (Supporting Information). In contrast, focusing
on larger fragments (>8 heavy atoms) identifies recognizable
chemical motifs: a GPCR privileged substructure, a fibrate group
from PPAR NHR receptors, quinoline and indolyl maleimide
groups from kinase inhibitors, and benzamidine from serine
proteases (Table 3). Some frequently occurring fragments in
active molecules appear not because of their effect on binding
affinity but because of their common use for modifying
physicochemical properties (e.g., morpholino solubilizing groups
used for kinase inhibitors). The unexpected presence of certain
fragments arises because of activity across gene families: e.g.,
biphenyls for ion channel actives arise from GPCR ligands that
bind to the KCNH2 and other potassium channels. Comparing
the average value of Lipinski properties34 in fragments and
parent molecules across gene families gives a Pearson correla-
tion coefficient (r) of 0.72 for ClogP and 0.89 for the number
of hydrogen bond acceptors. Thus, hydrophobic fragments make
hydrophobic molecules, as might be expected. There is no
correlation for molecular weight, suggesting that building blocks
of similar size can be used for creating active molecules across
different gene families.

The similarity of proteins can be quantified with a number
of methods, including sequence-similarity, protein active site
similarity,13,31,32 affinity differences among a series of molecules
assayed at both proteins,13,15 and the properties of small
molecules that bind to the proteins.16,19 We employ the fragment
similarity (described above for understanding kinase selectivity)
for establishing the similarity between proteins representing all
major gene families from the proteome. The 1200 fragments
used for calculating similarities occur more than 1 time per 1000
molecules among the 151 000 active compounds considered.

On average, the fragment similarity of proteins mirrors their
sequence similarity; proteins belonging to the same subfamily
(e.g., aspartic proteases, class A adrenergic GPCRs, receptor
tyrosine kinases) have higher fragment similarities than proteins
from the same gene family or different families (Figure 4).

Table 2. Retrospective Validation and Prospective Screening Results Using Fragment-Based Naive Bayes Models

FLT3 ABL1 ROCK2 RPS6KB1 CHEK2 MAP2K6 any

Retrospective Cross-Validation

training data prevalencea 0.24 0.11 0.12 0.13 0.10 0.07 0.24
sensitivity 0.59 0.56 0.59 0.57 0.51 0.57
specificity 0.89 0.93 0.92 0.90 0.91 0.95
PPV@test set prevb 0.64 0.51 0.52 0.47 0.39 0.45
PPV@5%c 0.22 0.31 0.30 0.24 0.23 0.36
diverse cassette prevalenced 0.15 0.03 0.05 0.08 0.04 0.03
PPV@diverse cassette prevalancee 0.49 0.22 0.26 0.34 0.19 0.25

Prospective Screening Results (1995 Compounds Tested)

no. active (% active) 478 (24.0) 320 (16.0) 318 (15.9) 302 (15.1) 251 (12.6) 150 (7.5) 828 (41.5)
no. pred active 1468 1190 1574 1260 1079 664 1965
sensitivity 0.93 0.81 0.96 0.90 0.85 0.87 1.00
specificity 0.33 0.44 0.24 0.42 0.50 0.71 0.02
PPVf 0.30 0.22 0.19 0.22 0.20 0.20 0.42
a The prevalence of actives in the data used for training and cross-validating models. b PPV calculated using training/test set prevalence. c PPV assuming

a 5% prevalence of actives in our collection. d Actives prevalence observed when screening diverse compound cassettes. e PPV calculated using actives
prevalence from diverse compound cassettes. See Discussion for why PPV using cross-validation test set prevalence is a poor predictor of prospective
screening PPV. f PPV for the prospective screening results is simply the number of compounds predicted active that were confirmed active divided by
number of compounds predicted active (i.e., the confirmation rate in the assay).
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Sequence similarity between targets is highest within subfamilies
and insignificant between gene families. Hierarchical clustering
of fragment-derived protein similarities can reveal target pairs
modulated by small molecules containing similar fragments,
some of which are not related by sequence (Figures 4). A sample
of high-similarity protein pairs from different gene families is
shown in Table 4. Certain target pairs, such as the serotonin
transporter and serotonin receptor 2A, can be readily rational-
ized. High fragment similarity of targets does not imply high
similarity of ligands, as suggested by the exemplified ligands.
Including those shown in Table 4, there are 99 protein pairs
from different gene families having fragment similarity greater
than 0.5 (i.e., more than 3 standard deviations from the average
similarity of proteins from different gene families). Of all
compound pairs formed by taking one active at the first target
and one active at the second sequence-unrelated target, only
0.004% (1498) have Daylight similarity greater than 0.75 (a
lower similarity value than typically used in similarity searching
applications). Thus, targets unrelated in sequence having high
fragment similarity do not generally bind similar molecules. This

can be viewed as having common building blocks in ligands
for both targets, which are assembled differently and include
fragments that are not shared. Targets having binding pockets
with different characteristics can accommodate common frag-
ments.14 It is important to note that coverage of the proteome
by public domain sources is very uneven: there are substantially
fewer protease targets having 100 or more actives compared to
GPCRs (32 vs 110), which may not accurately represent the
true diversity of actives. The general applicability of target maps
obtained from ligands should be understood with these data set
biases in mind.

The similarity of proteins assessed using fragment frequencies
differs from that obtained using the promiscuity index of Paolini
and colleagues,15 which quantifies the ability of molecules to
bind at each of two receptors (Figure 5). Significant differences
are observed for ligands of class A GPCRs, which are
promiscuous within the class and across many others; in contrast,
class A GPCRs have lower overall fragment similarity within
and across classes. Fragment similarities indicate that protease

Figure 3. Comparison of SAR (experimental) similarity with various predictors. (Top left) Exemplification of methodology used for determining
SAR similarity from compounds assayed at each of two kinases and for calculating kinase similarities from the fragment composition of active
compounds (Methods). (Top right) Comparison of SAR similarity from internal profiling vs similarities calculated from fragment frequencies of
active molecules. (Bottom) Correlations between SAR similarities from internal profiling and (1) the subset of compounds appearing in PubChem,
(2) 291 overlapping kinase pairs from our previous work using IC50 data from the literature,13 (3) using Ambit data published for 19 compounds
(staurosporine excluded) at 26 of the 120 reported kinases present on our profiling panel,29 (4-6) kinase similarities calculated using fragment,
Daylight bit, and MACCS key frequencies in actives (Methods), (7) using sequence identity over the catalytic domain, (8) from the dehydron work
of Fernandez and co-workers,30 and (9) using the structure-based approach reported in our previous work.13 The negative correlation for (8) is
expected, since a similarity and a distance are compared. When calculating a SAR distance (Euclidian) rather than a Tanimoto SAR similarity on
our profiling data, the correlation (r) vs (8) is 0.32.
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Table 3. Most Frequent Fragments with More than Eight Heavy Atoms by Gene Familya

a The numbers below fragments indicate their rate of occurrence per 100 actives from the given gene family, and the value in parentheses is the average
rate of occurrence across gene families. Detailed results for the 1000 most frequently-occurring fragments for each gene family are given in the Supporting
Information. The total number of active compounds for each gene family is as follows: GPCR 113 770; ion channel 8621; transporter 4479, NHR 6226;
kinase 24805; protease 28 895.
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fragments occur frequently in compounds active at other
proteases and targets from different gene families.

It has been suggested that differences between the promiscuity
index and the fragment similarity of targets might be explained
by the greater chemical diversity (and hence lower fragment
similarity) of ligands for promiscuous targets. To investigate
this, we return to the 53 kinase profiling data set and quantify
their promiscuity (since each compound has been assayed at
multiple kinases, this provides a better test case than the
literature/patent data). One approach simply uses the average
SAR similarity of a kinase vs the remaining 52 kinases. In
addition, we calculate the promiscuity indices P1, P2, and P3
described by Paolini and colleagues,15 defining as actives those
compounds having 70% inhibition or more at a given target.
The average SAR similarity and Paolini’s P3 are related
measures of promiscuity, and the high ranking of the kinases
KDR and FLT3 (first and second) by these measures is
consistent with our experience with those targets (Figure 6).

Two measures for quantifying the diversity of actives were
calculated: (1) the number of nonredundant actives, in which
only compounds having Daylight similarity less than 0.85
remain, and (2) the average distance computed over all pairs of
actives at a target. Both measures of diversity are positively
correlated with the measures of promiscuity described above

(i.e., more promiscuous targets have a greater diversity of
actives), although only the nonredundant actives count is
significantly different when comparing low vs high diversity
groups with respect to the P3 measure (Figure 3) and the average
SAR similarity (not shown).

In summary, we believe that targets of different gene families
having high fragment similarity of actives present opportunities
for cross fragment-based drug discovery; a well-developed
understanding of fragment-activity relationships at one target
can be applied to a target unrelated by sequence. It is not
unreasonable to expect that peptidic fragments of protease
ligands may be observed in ligands of peptide GPCRs, even
when the overall similarity of actives (i.e., assembled fragments)
is low. Another possible application of fragment driven target
similarities is the identification of new pharmacology for existing
compounds in the spirit of Wermuth’s SOSA approach35 and
our drugs in other drugs (DIOD) concept.36 What the present
work provides is a quantitative means for identifying target pairs
in which cross-utilization of fragments or entire molecules may
prove fruitful.

Discussion

The decomposition of molecules into fragments allows the
comparison of molecules using standard cheminformatics

Figure 4. Tanimoto similarities of proteins calculated using fragment frequencies in active molecules (IC50/Ki e 1 µM). (Top) Distribution of
fragment similarities for protein pairs belonging to different gene families (e.g., GPCR vs kinase), the same gene family but different subfamilies
(e.g., cysteine vs aspartic proteases), or the same subfamily. The median (75th percentile) for each grouping is 0.10 (0.18), 0.12 (0.20), and 0.24
(0.42) for the three groups. (Bottom) Hierarchical clustering (Ward’s method) on a subset of fragment frequencies for 46 targets having fragment
similarity to a target of different gene family greater than 0.5; 0.5 was selected on the basis of average similarity + 3 standard deviations for targets
from different gene families. Only 25 fragments are shown for clarity; these contain more than four atoms, have frequency of occurrence greater
than 15 per 1000 molecules, and contain one or more heteroatoms.
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Table 4. Proteins Pairs Having High Fragment Similarity and Insignificant Sequence Similaritya
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applications. We have demonstrated their use for building
highly interpretable and mathematically simple naive Bayes
models of activity in single concentration kinase binding
assays. Retrospective cross-validation and prospective testing
of compounds predicted active indicate the usefulness of
fragment fingerprints in predictive modeling. In contrast to
some popular fingerprint methods, the connection to chemical
structure is obvious. This facilitates the conversion of variable
importance (e.g., the probability of observing activity given
the presence of a given fragment) into ideas for synthesizing
novel molecules.

In addition, the comparison of fragment distributions in
ligands for two proteins provides a means of assessing protein

similarity. The fragment-derived similarities complement se-
quenced-derived similarities, since they can establish relation-
ships between proteins modulated by small molecules with
similar fragment composition, even in cases where they exhibit
weak or absent sequence similarity. Fragment-derived similari-
ties require only a moderate number of actives at each target,
thus extending their applicability to protein pairs where insuf-
ficient data are available for directly calculating their SAR
similarity using compounds assayed at both targets. The
identification of protein pairs having high fragment similarity
is useful for initiating screening efforts at the second target,
using a possibly greater number and diversity of actives at the

Table 4. Continued

a Official gene symbols are defined as follows: AKR1B1, aldose reductase; CACNA1B, voltage-gated calcium channel; CCKAR, cholecystokinin A receptor;
CHRM3, M3 muscarinic receptor; CTSB, cathepsin B; CTSL, cathepsin L1; DRD1, dopamine receptor D1; F2, thrombin; GPR44, G-protein-coupled receptor 44;
GRIN1, NMDA receptor 1; GRM2, glutamate receptor, metabotropic 2; HTR2A, serotonin receptor 2A; LTB4R, leukotriene B4 receptor; MAPK14, p38 MAP
kinase; MME, membrane metalloendopeptidase; MMP3, matrix metalloproteinase 3; NR3C1, glucocorticoid receptor; OPRK1, opioid receptor κ1; PPARG, PPAR
γ; REN, renin; SLC6A2, noradrenaline transporter; SLC6A3, dopamine transporter; SLC6A4, serotonin transporter. IC50 or Ki activities expressed in nM for
representative compounds. References for journals indicate the volume number and first page; otherwise, patent numbers are indicated.
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first, and for understanding the potential for cross-activity of
compounds beyond that enabled by sequence comparisons.

Methods

Decomposition of Small Molecules into Fragments Using
Dicer. The fragmentation scheme applied in this work shares
underlying principles with RECAP.2 Like RECAP, Dicer will not
cleave a ring bond. Whereas RECAP contains a list of 11 bond
types that can be broken, dicer takes a more expansive view and
breaks the bond types indicated in Figure 1.

These bond breaking patterns were identified by chemists as
being likely regions of interest in molecule synthesis. Unlike
RECAP, Dicer is fully recursive and so can generate fragments of
fragments and overlapping fragments. When limiting the size of
fragments to between 4 and 17 heavy atoms, RECAP rules give
fewer fragments (∼40% when compared to Dicer fragments) with
slightly lower molecular weight and ClogP (within 10% of Dicer
fragments). The maximum number of bonds to be simultaneously
broken is a user controlled parameter (set to 3 in this work); this
restriction prevents combinatorial explosions, which produce
minimally interesting fragments. Only fragments containing between
4 and 17 heavy atoms are used in this work; limiting the size of
fragments keeps the molecular weight of reassembled molecules
within a reasonable range.

Defining a Fragment Fingerprint. The total number of frag-
ments occurring in our 151 000 compound data set of journal and
patent actives is 226 453. When a threshold of 1 occurrence per
1000 molecules is imposed, the number of fragments used for
representing compounds or targets is reduced to 1126. A similar
reduction for the kinase-assayed compounds results in 1815
fragments used for representing compounds and targets.

Ignoring rare fragments results in smaller fingerprints and
increases the speed of calculations. It is possible to use smaller
values, but 1 occurrence per 1000 molecules is a very rare fragment.
For calculating the fragment similarity of two proteins, including
rarer fragments has no impact since their effect is proportional to
the rate of occurrence (see formula below). For naive Bayes models,
the use of Dirichlet priors and other “smoothing” transformations
reduces the effect of rare features. Naive Bayes models using a

minimum occurrence of 1 fragment per 10 000 molecules give
results numerically identical to those in Table 1.

Fragment and SAR Similarity. The fragment similarity of two
proteins, which ranges from 0 to 1, is obtained by calculating the
frequency of occurrence of each fragment in active molecules
((number of occurrences of fragment)/(number of actives mol-
ecules)). For two targets described by the frequencies of N
fragments, the Tanimoto similarity is calculated using

FragSim1,2 )
∑
k)1

Nfrags

Fr1,kFr2,k

∑
k)1

Nfrags

Fr1,k
2 + Fr2,k

2 - Fr1,kFr2,k

where Fr1,k is the frequency of the kth fragment among actives of
protein 1. The calculation is exemplified in Figure 3. SAR similarity
can be calculated in a similar manner, using the activity of N
compounds assayed at each receptor:

SARSim1,2 )
∑
k)1

Ncpds

Act1,kAct2,k

∑
k)1

Ncpds

Act1,k
2 +Act2,k

2 -Act1,kAct2,k

where Act1,k is a value between 0 and 3 denoting the activity range
of compound k at protein 1. Each pair of kinases has at least 570
compounds assayed in common, with an average of 7875.

In order to relate single-concentration inhibition (20 µM) to the
probability of obtaining an IC50 value less than 1 µM in a
concentration–response curve, percent inhibition values are binned
into four groups for SAR similarity calculations: 0–50% ) 0
(negligible), 50–70% ) 1 (low), 70–90% ) 2 (moderate), 90% or
more ) 3 (high). We have found empirically that this scheme
represents reasonably well the probability of having IC50 e 1 µM,
indicated in parentheses for each group.

Naive Bayes Models. For a one fragment model, Bayes rule
can be used to calculate the probability of observing activity (A
) 0 for inactives, A ) 1 for actives) given the presence of frag-
ment i:

Figure 5. Comparison of the promiscuity index15 determined using proprietary and publicly available SAR data, within and between various
protein classes (left), and average fragment similarity of targets determined using journal and patent data, within and between the same classes
(right). Two target classes (enzymes, others; oxidoreductases) were removed because of inadequate coverage in our database of public actives or
uncertainty in how the Paolini terms relate to Proteome33 annotations generally employed in this work. Adapted by permission from Macmillan
Publishers Ltd: Nature Biotechnology, ref 15, Copyright 2006.
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P(A) 1|Fri))P(A) 1) ·P(Fri|A) 1) ⁄ P(Fri)

P(A)1) is simply the hit rate from the assay, and P(Fri) is the
probability of observing fragment i. Generalizing to N fragments
and assuming conditional independence of fragments,

P(Fri|A,Frj))P(Fri|A)

one can show that the log likelihood ratio equals

LLR) ln
P(A) 1|Fr1,Fr2,...,FrN)

P(A) 0|Fr1,Fr2,...,FrN)
) ln

P(A) 1)
P(A) 0)

+

∑
i)1

N

ln
P(Fri|A) 1)

P(Fri|A) 0)

For a two-class problem (active vs inactive), the log likelihood ratio
is equal to

LLR) ln
P(A) 1|Fr1,Fr2,...,FrN)

P(A) 0|Fr1,Fr2,...,FrN)
) ln

P(A) 1|Fr1,Fr2,...,FrN)

1-P(A) 1|Fr1,Fr2,...,FrN)

allowing the probability of activity given the presence/absence of
fragments Fri in a compound to be calculated as

P(A) 1|Fr1,Fr2,...,FrN)) exp(LLR)
1+ exp(LLR)

The standard Dirichlet prior is assumed on Fri, to give smooth
probability estimates:

P(Fri|A) 1)) (number of actives containing Fri + 1) ⁄
(number of actives+ 2)

Positive Predictive Value Calculation. Positive predictive
values (PPV) are calculated from the sensitivity (TP), specificity
(TN), and prevalence Prev from

PPV) TP · PreV
TP · PreV+ (1-TN)(1- PreV)

PPV ranges from 0 (no precision) to 1 (perfect precision). As TN
tends to 1, PPV tends to 1; in other words, even a model correctly
classifying only 1% of actives will have perfect precision, since it
will never incorrectly classify an inactive compound.

Biochemical Assays. Recombinant protein (5–10 mU) is
incubated with 0.2 mM EDTA, 8 mM MOPS having pH 7.0, 10
mM magnesium acetate, 50 µM substrate, 20 µM concentration
of test substance, and γ-33P-ATP, having concentration equal
to Km for the enzyme. The final reaction volume is 25 µL.
Addition of MgATP initiates the reaction, which is followed by
a 40 min incubation at room temperature. The reaction is stopped
by the addition of 5 µL of a 3% phosphoric acid solution. A 10
µL sample is plotted onto a P30 filtermat and washed three times
for 5 min in 75 mM phosphoric acid and once in methanol before
drying and scintillation counting.
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